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Abstract

Background: Preoperative evaluation of lymph node (LN) state is of pivotal significance for informing therapeutic
decisions in gastric cancer (GC) patients. However, there are no non-invasive methods that can be used to
preoperatively identify such status. We aimed at developing a genomic biosignature based model to predict the
possibility of LN metastasis in GC patients.

Methods: We used the RNA profile retrieving strategy and performed RNA expression profiling in a large GC cohort
(GSE62254, n = 300) from Gene Expression Ominus (GEO). In the exploratory stage, 300 GC patients from GSE62254
were involved and the differentially expressed RNAs (DERs) for LN-status were determined using the R software. GC
samples in GSE62254 were randomly allocated into a learning set (n = 210) and a verification set (n = 90). By using
the Least absolute shrinkage and selection operator (LASSO) regression approach, a set of 23-RNA signatures were
established and the signature based nomogram was subsequently built for distinguishing LN condition. The
diagnostic efficiency, as well as the clinical performance of this model were assessed using the decision curve
analysis (DCA). Metascape was used for bioinformatic analysis of the DERs.

Results: Based on the genomic signature, we established a nomogram that robustly distinguished LN status in the
learning (AUC = 0.916, 95% CI 0.833–0.999) and verification sets (AUC = 0.775, 95% CI 0.647–0.903). DCA
demonstrated the clinical value of this nomogram. Functional enrichment analysis of the DERs was performed
using bioinformatics methods which revealed that these DERs were involved in several lymphangiogenesis-
correlated cascades.

Conclusions: In this study, we present a genomic signature based nomogram that integrates the 23-RNA
biosignature based scores and Lauren classification. This model can be utilized to estimate the probability of LN
metastasis with good performance in GC. The functional analysis of the DERs reveals the prospective biogenesis of
LN metastasis in GC.
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Background
Globally, gastric cancer (GC) is the 5th most prevalent
cancer type and the 3rd highest cause of cancer-
associated mortalities [1]. Some studies demonstrated
that Lymph node (LN) metastasis is an independent risk
index for poor prognosis of GC [2, 3]. Precise and exact
preoperative identification of LN involvement is import-
ant in informing therapeutic decisions for GC patients
[4, 5]. Clinicopathologic factors such as lymphatic inva-
sion or pathological differentiation are associated with
LN metastasis, however, they can hardly be obtained
preoperatively [6, 7]. The current preoperative predic-
tion of LN metastasis primarily relies on morphological
features of the lymph nodes as revealed by computed
tomography (CT), which has unfavorable sensitivity [8].
Tumor biosignatures, including carcinoembryonic anti-
gen (CEA), as well as carbohydrate antigen 199 (CA-
199) have been shown to be poor predictors of LN me-
tastasis in GC [9, 10]. Therefore, novel diagnostic bio-
markers are needed to improve on the current strategies
for predicting LN metastasis in GC patients. Gene ex-
pression studies have been performed to elucidate on
the distinct molecular biosignatures for LN metastases.
Daisuke Izumi et al. proposed a 15-gene signature for
identification LN metastasis in GC [9]. Song et al. devel-
oped a co-expression network of RNAs for assessing LN
metastasis in GC patients [11]. These studies show that
genes have a high predictive power for detecting LN
metastasis. However, clinicopathologic factors associ-
ated with LN status were not involved in these stud-
ies [12–14]. A Nomogram is a visual predictive tool
used to quantify risk factors of LN metastasis in sev-
eral carcinomas [15, 16], including early GC [17].
However, the current nomogram only integrates clin-
ical and postsurgical factors, which would restrict
their clinical value. Therefore, we aimed to establish
and verify the efficacy of a nomogram that integrates
both gene biosignatures and clinicopathologic parame-
ters for the preoperative prediction of LN metastasis
in GC.

Methods
Data preparation and differential expression analysis
Gene expression information and sample data from
GSE62254 dataset in this research were retrieved from
GEO (http://www.ncbi.nlm.nih.gov/geo/)in its processed
format, using the package ‘GEOquery’ in R. The over-
view of the screening strategy used in this study is
shown in Fig. 1. The clinical data for these samples were
downloaded from the authors’ website (https://www.
nature.com/articles/nm.3850) on May 20th, 2020. The
dataset obtained from the GEO database had been anon-
ymized and, therefore, ethical approval was waived. The

samples in GSE62254 were randomly clustered into a
learning set and a verification set.
Human gene annotation files (GRCh38.p12) were ob-

tained from the Ensembl repository (https://asia.
ensembl.org/index.html) for RNAs annotation on May
20th, 2020. Samples in the GSE62254 dataset were di-
vided into LN-negative and LN-positive arms according
to the source information. The differentially expressed
RNAs (DERs) were identified using the package limma
[18]. DERs were distinguished between the two groups
according to the false discovery rate (FDR) < 0.05. Based
on the R package heatmap, hierarchical clustering ana-
lysis was performed [19]. A volcano plot was developed
by the ggplot2 package [19].

Development of the 23-RNA signature
The least absolute shrinkage and selection operator
(LASSO) regression approach which is applicable in the
regression analysis of high-dimensional data was per-
formed using the R package “glmnet” [20]. For high-
dimensional data with few true predictors and many
noise variables, LASSO shrinkage penalty would force a
feature weight to zero and this could reduce variables.
This is an advantage over ridge regression, as it greatly
improves model interpretability [20]. According to the
optimal lambda value acquired using cv.glmnet, candi-
date genes with corresponding coefficients (βi) were
screened out from the DERs. For each gene, univariate
analysis was performed to investigate the association be-
tween gene expression levels and lymph node metastasis
levels. A risk score was calculated for each patient using
the linear combination of expression data (Expi) of se-
lected genes that were weighted by their corresponding
coefficients (βi) and intercept. Based on the above
process, a risk-score formula was developed as:

Risk score (RS) =
Pn¼23

i¼1
(βi × Expi) + Intercept

The R package “OptimalCutpoints” was applied in de-
termining the optimum cutoff point for risk score. The
optimum cutoff was employed to cluster the patients
into high- or low-risk classes. It was obtained when the
Youden index in receiver operating characteristic (ROC)
curve predicting LN metastasis reached its maximum in
the learning set. Samples were clustered into high- or
low-risk clusters by utilizing the optimum cutoff.

Construction and assessment of genomic signature based
model
Candidate predictors including age, sex, Borrmann clas-
sification, Lauren classification, tumor location and the
risk score were embedded into the logistic regression
analysis to design a diagnostic model for predicting LN
metastasis in the learning set [21, 22]. To provide a
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quantitative technique for predicting individual likeli-
hood of LN metastasis, a nomogram prediction model
was constructed based on the independent risk factors
using the R package rms [23]. Receiver operating charac-
teristic (ROC) assessment was performed to inspect the
sensitivity and specificity of the nomogram using R
package “pROC” [24]. The calibration curve was subse-
quently utilized to examine the effectiveness of the
nomogram with additional 1000 bootstrap samples to
decrease the over fit bias. Decision curve analysis (DCA)
was applied to inspect the clinical application of the
gene signature based model [25].

Functional enrichment analysis
Metascape (http://metascape.org/gp/index.html) was
used to predict the potential biological functions of the
differentially expressed genes [26].

Statistical analyses
A chi-square test was used for the analysis of categorical
variables between the two sets. The Student’s t test was
applied in continuous variables assessments. Statistical
analyses were performed using the SPSS software (ver-
sion 24) or R software (version3.5.3). All tests were dual-
sided and P-value below 0.05 signified statistical
significance.

Results
Patient characteristics
Samples in the GSE62254 dataset were randomly clus-
tered into a learning set (n = 210, Additional file 1) and
a verification set (n = 90, Additional file 2). The baseline
features of all patients are shown in Table 1. The LN
metastasis incidences were 88.1% in the learning set and
85.6% in the verification sets with no significant
differences.

LN negative
(N=38)

Function enrichment analysis

Learning set(N=210)

DERs(N=186)

LN positive
(N=262)

GSE62254 dataset(N=300)

Learning stage

Discovery stage

Nomogram prediction

Logistic regression

Lasso logistic regression

Verification set (N=90)

Clinicopathological risk factors 23 RNAs signature

LN positive
(N=185)

LN negative
(N=25)

Verification stage

Fig. 1 The main flowchart of this study. The flowchart of analyses to establish the nomogram model and test its predictive value. Abbreviations:
LN: lymph node, DERs: differentially expressed RNAs,LASSO: Least absolute shrinkage and selection operator
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Differential expression analysis
Overall, 14,651 mRNAs, 840 lncRNAs, and 111 miRNAs
were annotated from the GSE62254 datasets. The 300
GC samples in the GSE62254 dataset were allocated into
LN-negative (38 samples) and LN-positive (262 samples)
groups. 186 DERs (Additional file 3) were screened out
under the defined thresholds between the LN-positive
and the LN-negative groups. Among the 186 DERs, 70
DERs were found to be upregulated while 116 DERs
were downregulated. Based on expression of the DERs,
the heatmap and volcano plot are shown, in Fig. 2 and
Fig. 3, respectively.

Construction of 23-RNA signature based risk score
A total of 186 DERs with non-zero coefficients in the
LASSO logistic regression model were reduced to 23
RNAs on the basis of 210 patients in the learning set
(Additional file 5) (Fig. 4a, b). The risk score formula was
subsequently established based on the 23 RNAs and their
corresponding coefficients (Additional file 4 / Table 1s).
The developed formula is:

RS=0.3370*ExpTRAPPC10+ (− 0.6895)*ExpRHOA +
0.0452*ExpIGFBP2+1.4984*ExpC11orf80+ (−
0.0937)*ExpZNF74+ (− 0.9888)*ExpFOXN2+0.6580*ExpGOL-
GA8A+0.9803*ExpRSRP1+ (− 0.4094)*ExpUSP10+
0.3896*ExpCLTB + (−1.2924)*ExpPIK3R1+
1.5335*ExpPABPN1+ (− 0.3669)*ExpCLCN4+ (−
1.4978)*ExpPARD6B+0.0329*ExpTRPA1+ (−
0.0174)*ExpBAG3+0.4511*ExpZNF26+0.0381*ExpGDPD3+
1.1286*ExpSPTBN5+2.3647*ExpKLHL28+
1.0420*ExpGTPBP8+2.5667*ExpTXNDC11+
0.1489*ExpTMEM163+ Intercept.
We also compared the expression of each of the 23

genes between LN-positive and the LN-negative groups.
Most of the genes were correlated with LN metastasis
(p < 0.05 Additional file 4/ Table 1s).
The distribution of risk scores between LN-negative

and LN-positive groups with significant differences (p <
0.05) are shown, in Fig. 4c and d, respectively. The cutoff
value of the risk scores was calculated, and the samples
were separately clustered into high or low risk classes in
both the learning and verification sets. The cutoff value
(1.3806) was obtained when the ROC curve reached
optimum sensitivity (94.05%) and specificity (88.00%) for
predicting LN metastasis (Additional file 5/ Fig. S1a).
The Positive Predictive Value (PPV) reached 98% (Add-
itional file 5/ Fig. S1b). Patients in the learning set with
a risk score higher than 1.3806 were assigned to the
high-risk group (n = 177) while the rest (n = 33) were
assigned to the low-risk group (Additional file 6). Pa-
tients in the verification set with a risk score higher than
1.3806 were assigned to the high-risk group (n = 60)
while the rest (n = 30) were assigned to the low-risk
group (Additional file 7).

Construction and verification of genomic signature based
model
By using the logistic regression analysis, Lauren classifi-
cation (odds ratio [OR] = 2.126, 95% CI 1.070–4.223, p <
0.05) and risk score (OR = 126.126, 95%CI 30.466–
522.148, p < 0.05) were confirmed as independent risk
factors for LN metastasis (Table 2). Based on the two in-
dependent predictive factors, a nomogram model was
subsequently built (Fig. 5a). LN metastasis probability
was easily calculated based on their Lauren classification
and risk scores. ROC evaluation was used to examine
sensitivity and specificity of the nomogram. It was found
that the nomogram had an optimum sensitivity of 94.1%
and specificity of 88.0% when predicting LN metastasis
in the learning set, and an optimum sensitivity of 74%
and specificity of 76.9% in the verification set. The area
under curve (AUC) were 0.916 (95% CI: 0.833–0.999)
for learning set and 0.775 (95% CI: 0.647–0.903) for the
verification set, which implied that the nomogram had
good utility (Fig. 5b). In addition, the predicted

Table 1 Baseline features of all subjects

Learning set(n = 210) Verification set(n = 90) pValue

Sex 0.539754

Male 137 62

Female 73 28

Age 0.667548

> =65 111 50

< 65 99 40

Borrmann 0.560256

B-I 11 5

B-II 70 34

B-III 98 43

B-IV 31 8

Lauren 0.216635

Intestinal 91 51

Mixed 13 4

Diffuse 101 35

Location 0.787408

Antrum 108 47

Body 73 34

Cardia 24 8

Whole 5 1

N 0.544463

Negative 25 13

Positive 185 77

Categorical variables were compared by Chi squared test or Fisher’s exact test
as appropriate
LN, lymph node;
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probability of LN metastasis was further compared with
the authentic probability by the calibration curve in the
learning and verification set. Deviation when probability
was below 75% in the verification group, bias-corrected
calibration plot of the nomogram corresponded closely
with the authentic probability in both sets. These find-
ings of the estimated likelihood of LN metastasis
and authentic probability were consistent. The
mean absolute errors were 0.021 and 0.039 in the
learning and verification set respectively (Fig. 5c,

d). The DCA for genomic-clinicopathologic nomo-
gram demonstrated that if the threshold ranged
from 0.20 to 0.95, the nomogram model was more
beneficial relative to either the treat-all-cases
scheme or the treat-none scheme (Additional file
8/Fig. S2).

Functional enrichment analysis
Metascape was used for cascade and process enrichment
analysis of the DERs (Additional file 9). The top 15
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Fig. 2 Heatmap: The hierarchical clustering heatmap (pink and blue represent lymph node positive and the lymph node negative samples,
respectively in sample strip)
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clusters with their illustrative enriched terms are shown
in Fig. 6. A sub-cluster of the enriched terms was se-
lected and regarded as a network plot (Additional file 10/
Fig. S3). Specifically, the enriched DERs were associated
with several pathways, such as Signaling by platelet de-
rived growth factor (PDGF) and Intrinsic Pathway for
Apoptosis.

Discussion
LN metastasis is involved in GC prognostic outcomes [2,
3]. Precise preoperative determination of LN involve-
ment in GC is pivotal for clinical decision-making. Less
invasive therapeutic options such as endoscopic sub-
mucosal resection (ESD) can be effectively performed
for LN negative patients in early GC. However, ESD
should be avoided for early GC patients with a high risk
of LN metastasis [27, 28]. For localized LN negative GC
patients, limited LN resection is recommended to reduce
postoperative complications. Surgical resection with ex-
tensive lymphadenectomy is necessary for advanced GC
patients with LN metastasis [5]. Therefore, it is import-
ant to accurately determine the extent and degree of LN
metastasis in order to inform therapeutic decisions.
With the development of high throughput sequencing
(HTS) technologies, the molecular portrait of GC has
been comprehensively analyzed by gene-expression pro-
filing [29, 30]. As RNA-sequencing technology provides
molecular insights into tumor biology process, we fo-
cused on building a genomic signature based Nomogram
for predicting LN metastasis in GC. By using cDNA mi-
croarrays, several studies have reported certain
geneexpression-based biomarkers for predicting LN me-
tastasis in GC [31–33]. However, these studies did not

elucidate on the clinical characteristics associated with
LN status in GC [12–14].
Based on the Lauren classification, GC can be grouped

into intestinal or diffuse kinds [34]. The intestinal type
of GC stems from premalignant lesions developed from
an initial Helicobacter pylori (H. pylori) triggered chronic
gastritis and successive atrophic and metaplastic gastritis
[35]. The diffuse form of GC is triggered by active in-
flammation of the gastric mucosa [36, 37]. Diffuse forms
are prevalent in younger patients with an elevated risk of
LN metastasis compared to the intestinal types [38–40].
Our study established that Lauren classification was an
independent risk index for LN metastasis while diffuse
type was associated with elevated risk of LN metastasis
relative to the intestinal form.
We constructed and verified a diagnostic, genomic

biosignature based nomogram as a noninvasive strategy
for preoperative estimation of LN metastasis in GC. This
nomogram incorporates two items of genomic signature
based risk scores and Lauren classification. Though devi-
ation was obviously found in the verification set when
probability was below 75%, the nomogram exhibited
ideal coincidence to the authentic probability in the
learning set. The possible reason for deviation observed
in the verification set may be the predictive model has
an over-fitting problem as it was built based on data
from the learning set. Therefore, it did not perform as
well in the verification set as it did in the learning set
when predicting LN metastasis. The areas under the
ROC curve for the learning and verification sets implied
that the nomogram had good utility. The DCA is a sim-
ple method for evaluating the clinical performance of a
prediction model. It can quantify different strategies and
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Fig. 3 Volcano plot: The volcano plot (the red and blue dots represent up- and down-regulation of differentially expressed RNAs respectively,
false discovery rate < 0.05)
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determine an optimal threshold range. This LN metasta-
sis prediction model can assist surgeons to balance be-
tween the quality of life and aggressive
lymphadenectomy.
To provide insights into the potential biological pro-

cesses, “metascape” was performed for the functional

and enrichment analysis of DERs. The DERs were
enriched in three signaling pathways, including PDGF
signaling, Interleukin-7 signaling and in the Intrinsic
pathway for apoptosis. The PDGF receptor cascade con-
stitutes a signaling network that is essential for the
growth of cells of mesenchymal parentage. Dysregulation

Fig. 4 Selection of the genes trough the LASSO approach and distribution of risk score. (a) Selection of tuning parameter (λ) via 10-fold cross-
verification with minimum criteria. The area under curve was plotted versus log (λ). Dotted vertical lines were drawn at the optimal values using
the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). The optimal λ value of 0.033, with log (λ) = − 3.411 was
chosen based on minimum criteria. (b) LASSO coefficient profiles of the 186 differentially expressed RNAs. A coefficient profile plot was generated
against the log (λ) sequence. Vertical line was drawn at the optimal value where optimal λ led to 23 nonzero coefficients. (c) Distribution of risk
score in learning set. (d) Distribution of risk score in verification set
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of this pathway can lead to extracellular matrix recon-
struction in a tumor-enhancement manner to promote
the migration, infiltration, angiogenesis, and lymphan-
giogenesis [41, 42]. For this pathway, enriched genes
such as STAT3 can activate cancer after the interaction

of cytokines and cell surface receptors, and regulation of
the downstream and promote the proliferation and
growth of gene expression [43]. PLAT stimulates plas-
minogen activator which degrades the extracellular
matrix, especially the collagen fiber components, mediat-
ing cell migration and tissue remodeling [44]. As for the
Interleukin-7 signaling pathway, the Interleukin-7 (IL-7)
gene is involved in both B-cell and T-cell proliferation
and its absence leads to immature immune cell arrest.
IL-7 modulates cell growth, apoptosis and modulates
cancer lymphangiogenesis [45, 46]. RAG1 encodes the
RAG1 protein which is involved in adjusting the starting
phase of V(D) J recombination, making the rearrange-
ment of antigen receptor gene strictly in line with the
tissue and cell growth phases [47]. Low RAG1 gene ex-
pression is correlated with poor survival of gastric cancer
patients [47]. Apoptosis is a form of programmed cell

Table 2 Multivariate evaluations to evaluate potential predictive
factors for LN metastasis

Univariable p Multivariable p OR 95% CI

Sex 0.250

Age 0.866

Borrmann 0.729

Lauren 0.054 0.031 2.126 1.070–4.223

Location 0.894

Risk score < 0.0001 < 0.0001 126.126 30.466–522.148

LN, lymph node; OR, odds ratio; CI, confidence interval

Fig. 5 Developed a genomic signature based nomogram and the performance of the nomogram. (a) The nomogram was designed in the
learning set, with the 23-mRNA biosignature based risk score and Lauren classification integrated. (b) The area under curve of nomogram in
learning set was 0.916 (95% CI: 0.833–0.999). Area under curve of nomogram in verification set was 0.775 (95% CI: 0.647–0.903). (c) Calibration plot
in learning set (mean absolute error = 0.021). After 1000 repetitions of bootstrap, the bias-corrected calibration curve (solid line) was close to the
ideal curve (dashed line). (d) Calibration plot in verification set (mean absolute error = 0.039)
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death. Insufficient apoptosis is associated with neoplastic
diseases [48]. In the Intrinsic Pathway for Apoptosis,
enriched genes such as complement C1q binding protein
(C1QBP), also referred to as p32, are expressed in vari-
ous cancer types [49–54]. Protein phosphatase 3 regula-
tory factor subunit 1 (PPP3R1) is a member of β-
regulatory subunit family of calcineurin that codes for
apoptosis-stimulating protein of p53 (ASPP) in the p53
integrin family [55]. The ASPP enhances P53-mediated
apoptosis by binding to the P53 core domain [56]. How-
ever, the specific molecular mechanisms of the differen-
tially expressed genes in the pathways have not been
established. Elucidation of these mechanisms can pro-
vide new clues and molecular targets for the identifica-
tion and specific treatment of GC with LN metastasis.
Compared to previous nomograms [15–17], our model

incorporates Lauren classification and genomic signature
based risk scores. This model exhibited a high accuracy
for predicting LN metastasis. However, there were some
limitations associated with this study. First, we did not
perform external verification using data from another in-
stitution for this model. Second, clinicopathological fac-
tors, such as CEA level and CT-reported LN status, were
not available in the GSE62254 dataset. Therefore, these
important clinical features, could not be examined in
this study. More, studies should be performed to eluci-
date on the functions of DERs in the pathogenesis of LN
metastasis.

Conclusions
In conclusion, this nomogram incorporates both gen-
omic signature based risk score and Lauren classification
to estimate LN metastasis in preoperative GC.
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Additional file 6. Risk score and risk status for each sample in Learning
set.

Additional file 7. Risk score and risk status for each sample in
Verification set.

Additional file 8. Figure S2 Decision curve analysis for the genomic
signature based nomogram.

Additional file 9. Metascape Analysis result.

Additional file 10 Fig S3 Network of enriched terms: (a) Colored by the
cluster-ID, in which the nodes with similar cluster ID are frequently close
to each other. (b) Colored by p-value, in which the terms with more
genes tend to have a more remarkable p-value.

Acknowledgments
We appreciate GEO database for providing the original study data. We thank
QWZ for her invaluable contribution in biostatistics analysis.

Authors’ contributions
XZ, XFW and GYW designed the study. XZ analyzed, as well as interpreted
the data. XZ, FCX and YQ drafted the manuscript. JHP, SHW, WCC, TYL and
HPZ helped to revise the manuscript. All authors read and ratified the final
draft. All authors read and approved the final manuscript.

Fig. 6 Bar graph of enriched terms across the differentially expressed RNAs, colored by p-values

Zhong et al. BMC Cancer          (2021) 21:455 Page 9 of 11

https://doi.org/10.1186/s12885-021-08203-x
https://doi.org/10.1186/s12885-021-08203-x


Funding
This work was funded by the National Nature Science Foundation of China
(Grant Nos.81272493 and 81472213) and the Zhejiang Provincial Natural
Science Foundation of China (Grant No. LQ19H160044).

Availability of data and materials
The datasets generated and analysed during the current study are available
in the Gene Expression Ominus (GEO) (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE62254).

Declarations

Ethics approval and consent to participate
Ethics approval was not applicable because all data is publicly available and
without specific identifiers.

Consent for publication
Not applicable.

Competing interests
The authors disclose no conflict of interest.

Received: 23 August 2020 Accepted: 16 April 2021

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
https://doi.org/10.3322/caac.21492.

2. Lo SS, Wu CW, Chen JH, Li AFY, Hsieh MC, Shen KH, et al. Surgical results of
early gastric cancer and proposing a treatment strategy. Ann Surg Oncol.
2007;14(2):340–7. https://doi.org/10.1245/s10434-006-9077-x.

3. Mu GC, Huang Y, Liu ZM, Wu XH, Qin XG, Chen ZB. Application value of
nomogram and prognostic factors of gastric cancer patients who
underwent D2 radical lymphadenectomy. BMC Gastroenterol. 2019;19(1):
188. https://doi.org/10.1186/s12876-019-1098-6.

4. Lou N, Zhang L, Chen XD, Pang WY, Arvine C, Huang YP, et al. A novel
scoring system associating with preoperative platelet/lymphocyte and
clinicopathologic features to predict lymph node metastasis in early gastric
cancer. J Surg Res. 2017;209:153–61. https://doi.org/10.1016/j.jss.2016.10.011.

5. Japanese Gastric Cancer Association. Japanese gastric cancer treatment
guidelines 2010 (ver. 3). Gastric Cancer. 2011;14(2):113–23. https://doi.org/1
0.1007/s10120-011-0042-4.

6. Chu YN, Yu YN, Jing X, Mao T, Chen YQ, Zhou XB, et al. Feasibility of
endoscopic treatment and predictors of lymph node metastasis in early
gastric cancer. World J Gastroenterol. 2019;25(35):5344–55. https://doi.org/1
0.3748/wjg.v25.i35.5344.

7. Huang Q, Cheng Y, Chen L, et al. Low risk of lymph node metastasis in 495
early gastric cardiac carcinomas: a multicenter clinicopathologic study of
2101 radical gastrectomies for early gastric carcinoma. Mod Pathol. 2018;
31(10):1599–607. https://doi.org/10.1038/s41379-018-0063-1.

8. Kim AY, Kim HJ, Ha HK. Gastric cancer by multidetector row CT:
preoperative staging. Abdom Imaging. 2005;30(4):465–72. https://doi.org/1
0.1007/s00261-004-0273-5.

9. Izumi D, Gao F, Toden S, Sonohara F, Kanda M, Ishimoto T, et al. A
genomewide transcriptomic approach identifies a novel gene expression
signature for the detection of lymph node metastasis in patients with early
stage gastric cancer. EBioMedicine. 2019;41:268–75. https://doi.org/10.1016/j.
ebiom.2019.01.057.

10. Okada Y, Fujiwara Y, Yamamoto H, Sugita Y, Yasuda T, Doki Y, et al. Genetic
detection of lymph node micrometastases in patients with gastric
carcinoma by multiple-marker reverse transcriptase-polymerase chain
reaction assay. Cancer. 2001;92(8):2056–64.

11. Song Z, Zhao W, Cao D, Zhang J, Chen S. Elementary screening of lymph
node metastatic-related genes in gastric cancer based on the co-expression
network of messenger RNA, microRNA and long non-coding RNA. Braz J
Med Biol Res. 2018;51(4):e6685. https://doi.org/10.1590/1414-431x20176685.

12. Oka S, Tanaka S, Kaneko I, Mouri R, Hirata M, Kawamura T, et al. Advantage
of endoscopic submucosal dissection compared with EMR for early gastric

cancer. Gastrointest Endosc. 2006;64(6):877–83. https://doi.org/10.1016/j.gie.2
006.03.932.

13. Ajani JA, Bentrem DJ, Besh S, D'Amico TA, Das P, Denlinger C, et al. Gastric
cancer, version 2.2013: featured updates to the NCCN guidelines. J Natl
Compr Cancer Netw. 2013;11(5):531–46. https://doi.org/10.6004/jnccn.2013.
0070.

14. Hyung WJ, Cheong JH, Kim J, Chen J, Choi SH, Noh SH. Application of
minimally invasive treatment for early gastric cancer. J Surg Oncol. 2004;
85(4):181–6. https://doi.org/10.1002/jso.20018.

15. Klar M, Jochmann A, Foeldi M, Stumpf M, Gitsch G, Stickeler E, et al. The
MSKCC nomogram for prediction the likelihood of non-sentinel node
involvement in a German breast cancer population. Breast Cancer Res Treat.
2008;112(3):523–31. https://doi.org/10.1007/s10549-007-9884-1.

16. Briganti A, Larcher A, Abdollah F, Capitanio U, Gallina A, Suardi N, et al.
Updated nomogram predicting lymph node invasion in patients with
prostate cancer undergoing extended pelvic lymph node dissection: the
essential importance of percentage of positive cores. Eur Urol. 2012;61(3):
480–7. https://doi.org/10.1016/j.eururo.2011.10.044.

17. Zheng Z, Zhang Y, Zhang L, Li Z, Wu X, Liu Y, et al. A nomogram for
predicting the likelihood of lymph node metastasis in early gastric patients.
BMC Cancer. 2016;16(1):92. https://doi.org/10.1186/s12885-016-2132-5.

18. Smyth GK. limma: Linear models for microarray data. In: Gentleman R, Carey
VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics & Computational
Biology Solutions Using R & Bioconductor. New York: Springer; 2011. p.
397–420. doi: 10.1007/0–387-29362-0_23.

19. Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, et al. RNA-seq analyses of
multiple meristems of soybean: novel and alternative transcripts,
evolutionary and functional implications. BMC Plant Biol. 2014;14(1):169.
https://doi.org/10.1186/1471-2229-14-169.

20. Sauerbrei W, Royston P, Binder H. Selection of important variables and
determination of functional form for continuous predictors in multivariable
model building. Stat Med. 2007;26(30):5512–28. https://doi.org/10.1002/
sim.3148.

21. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis
(TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. https://doi.org/10.113
6/bmj.g7594.

22. Sauerbrei W, Boulesteix AL, Binder H. Stability investigations of multivariable
regression models derived from low- and high-dimensional data. J
Biopharm Stat. 2011;21(6):1206–31. https://doi.org/10.1080/10543406.2011.62
9890.

23. Eng KH, Schiller E, Morrell K. On representing the prognostic value of
continuous gene expression biomarkers with the restricted mean survival
curve. Oncotarget. 2015;6(34):36308–18. https://doi.org/10.18632/oncotarget.
6121.

24. Zhao J, Qin R, Chen H, Yang Y, Qin W, Han J, et al. A nomogram based on
glycomic biomarkers in serum and clinicopathological characteristics for
evaluating the risk of peritoneal metastasis in gastric cancer. Clin
Proteomics. 2020;17(1):34. https://doi.org/10.1186/s12014-020-09297-4.

25. Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions to decision curve
analysis, a novel method for evaluating diagnostic tests, prediction models
and molecular markers. BMC Med Inform DecisMak. 2008;8(1):53. https://doi.
org/10.1186/1472-6947-8-53.

26. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al.
Metascape provides a biologist-oriented resource for the analysis of
systems-level datasets. Nat Commun. 2019;10(1):1523. https://doi.org/10.103
8/s41467-019-09234-6.

27. ASGE TECHNOLOGY COMMITTEE, Kantsevoy SV, Adler DG, et al. Endoscopic
mucosal resection and endoscopic submucosal dissection.
GastrointestEndosc. 2008;68(1):11–8. https://doi.org/10.1016/j.gie.2008.01.037.

28. ASGE Standards of Practice Committee, Gan SI, Rajan E, et al. Role of EUS.
Gastrointest Endosc. 2007;66(3):425–34. https://doi.org/10.1016/j.gie.2007.05.026.

29. Cancer Genome Atlas Research Network. Comprehensive molecular
characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.
https://doi.org/10.1038/nature13480.

30. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular
analysis of gastric cancer identifies subtypes associated with distinct clinical
outcomes. Nat Med. 2015;21(5):449–56. https://doi.org/10.1038/nm.3850.

31. Weiss MM, Kuipers EJ, Postma C, Snijders AM, Siccama I, Pinkel D, et al.
Genomic profiling of gastric cancer predicts lymph node status and survival.
Oncogene. 2003;22(12):1872–9. https://doi.org/10.1038/sj.onc.1206350.

Zhong et al. BMC Cancer          (2021) 21:455 Page 10 of 11

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
https://doi.org/10.3322/caac.21492
https://doi.org/10.1245/s10434-006-9077-x
https://doi.org/10.1186/s12876-019-1098-6
https://doi.org/10.1016/j.jss.2016.10.011
https://doi.org/10.1007/s10120-011-0042-4
https://doi.org/10.1007/s10120-011-0042-4
https://doi.org/10.3748/wjg.v25.i35.5344
https://doi.org/10.3748/wjg.v25.i35.5344
https://doi.org/10.1038/s41379-018-0063-1
https://doi.org/10.1007/s00261-004-0273-5
https://doi.org/10.1007/s00261-004-0273-5
https://doi.org/10.1016/j.ebiom.2019.01.057
https://doi.org/10.1016/j.ebiom.2019.01.057
https://doi.org/10.1590/1414-431x20176685
https://doi.org/10.1016/j.gie.2006.03.932
https://doi.org/10.1016/j.gie.2006.03.932
https://doi.org/10.6004/jnccn.2013.0070
https://doi.org/10.6004/jnccn.2013.0070
https://doi.org/10.1002/jso.20018
https://doi.org/10.1007/s10549-007-9884-1
https://doi.org/10.1016/j.eururo.2011.10.044
https://doi.org/10.1186/s12885-016-2132-5
https://doi.org/10.1186/1471-2229-14-169
https://doi.org/10.1002/sim.3148
https://doi.org/10.1002/sim.3148
https://doi.org/10.1136/bmj.g7594
https://doi.org/10.1136/bmj.g7594
https://doi.org/10.1080/10543406.2011.629890
https://doi.org/10.1080/10543406.2011.629890
https://doi.org/10.18632/oncotarget.6121
https://doi.org/10.18632/oncotarget.6121
https://doi.org/10.1186/s12014-020-09297-4
https://doi.org/10.1186/1472-6947-8-53
https://doi.org/10.1186/1472-6947-8-53
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1016/j.gie.2008.01.037
https://doi.org/10.1016/j.gie.2007.05.026
https://doi.org/10.1038/nature13480
https://doi.org/10.1038/nm.3850
https://doi.org/10.1038/sj.onc.1206350


32. Teramoto K, Tada M, Tamoto E, Abe M, Kawakami A, Komuro K, et al. Prediction of
lymphatic invasion/lymph node metastasis, recurrence, and survival in patients with
gastric cancer by cDNA array-based expression profiling. J Surg Res. 2005;124(2):
225–36. https://doi.org/10.1016/j.jss.2004.10.003.

33. Marchet A, Mocellin S, Belluco C, Ambrosi A, de Marchi F, Mammano E,
et al. Gene expression profile of primary gastric cancer: towards the
prediction of lymph node status. Ann Surg Oncol. 2007;14(3):1058–64.
https://doi.org/10.1245/s10434-006-9090-0.

34. LAUREN P. THE TWO HISTOLOGICAL MAIN TYPES OF GASTRIC CARCINOMA:
Diffuse and so-called intestinal-type carcinoma. An attempt at a HISTO-
clinical classification. Acta Pathol Microbiol Scand. 1965;64(1):31–49. https://
doi.org/10.1111/apm.1965.64.1.31.

35. Correa P. Human gastric carcinogenesis: a multistep and multifactorial
process-first American Cancer Society award lecture on Cancer
epidemiology and prevention. Cancer Res. 1992;52(24):6735–40.

36. Watanabe M, Kato J, Inoue I, Yoshimura N, Yoshida T, Mukoubayashi C, et al.
Development of gastric cancer in nonatrophic stomach with highly active
inflammation identified by serum levels of pepsinogen and helicobacter
pylori antibody together with endoscopic rugal hyperplastic gastritis. Int J
Cancer. 2012;131(11):2632–42. https://doi.org/10.1002/ijc.27514.

37. Nardone G, Rocco A, Malfertheiner P. Review article: helicobacter pylori and
molecular events in precancerous gastric lesions. Aliment PharmacolTher.
2004;20(3):261–70. https://doi.org/10.1111/j.1365-2036.2004.02075.x.

38. Adachi Y, Yasuda K, Inomata M, Sato K, Shiraishi N, Kitano S. Pathology and
prognosis of gastric carcinoma: well versus poorly differentiated type.
Cancer. 2000;89(7):1418–24 doi: 10.1002/1097-0142(20001001)89:7<1418::aid-
cncr2>3.0.co;2-a.

39. Ribeiro MM, Sarmento JA, SobrinhoSimões MA, et al. Prognostic significance
of Lauren and Ming classifications and other pathologic parameters in
gastric carcinoma. Cancer. 1981;47(4):780–4 doi.org/10.1002/1097-
0142(19810215)47:4<780::aid cncr2820470424>3.0.co;2-g.

40. Lee T, Tanaka H, Ohira M, Okita Y, Yoshii M, Sakurai K, et al. Clinical impact
of the extent of lymph node micrometastasis in undifferentiated-type early
gastric cancer. Oncology. 2014;86(4):244–52. https://doi.org/10.1159/0003
58803.

41. Ehnman M, Östman A. Therapeutic targeting of platelet-derived growth
factor receptors insolid tumors. Expert Opin Investig Drugs. 2014;23(2):211–
26. https://doi.org/10.1517/13543784.2014.847086.

42. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in
physiology and medicine. Genes Dev. 2008;22(10):1276–312. https://doi.
org/10.1101/gad.1653708.

43. Mehine M, Kaasinen E, Heinonen HR`, Mäkinen N, Kämpjärvi K, Sarvilinna N,
Aavikko M, Vähärautio A, Pasanen A, Bützow R, Heikinheimo O, Sjöberg J,
Pitkänen E, Vahteristo P, Aaltonen LA Integrated data analysis reveals uterine
leiomyoma subtypes with distinct driver pathways and biomarkers. Proc
Natl Acad Sci2016;113(5):1315–1320. doi: https://doi.org/10.1073/pnas.151
8752113.

44. Sun F, Zhuo R, Ma W, Yang D, Su T, Ye L, et al. From clinic to mechanism:
proteomics-based assessment of angiogenesis in adrenal
pheochromocytoma. J Cell Physiol. 2019;234(12):22057–70. https://doi.org/1
0.1002/jcp.28769.

45. Lin J, Zhu Z, Xiao H, Wakefield MR, Ding VA, Bai Q, et al. The role of IL-7 in
immunity and Cancer. Anticancer Res. 2017;37(3):963–7. https://doi.org/1
0.21873/anticanres.11405.

46. Jian M, Yunjia Z, Zhiying D, Yanduo J, Guocheng J. Interleukin 7 receptor
activates PI3K/Akt/mTOR signaling pathway via downregulation of Beclin-1
in lung cancer. Mol Carcinog. 2019;58(3):358–65. https://doi.org/10.1002/
mc.22933.

47. Kang T, Ge M, Wang R, et al. Arsenic sulfide induces RAG1-dependent DNA
damage for cell killing by inhibiting NFATc3 in gastric cancer cells. J Exp
Clin Cancer Res. 2019;38(1):487 https:// doi: 10.1186/s13046-019-1471-x.
PMID: 31822296; PMCID: PMC6902349.

48. Matsuura K, Canfield K, Feng W, et al. Metabolic regulation of apoptosis in
Cancer. Int Rev Cell Mol Biol. 2016;327:43–87. https://doi.org/10.1016/bs.
ircmb.2016.06.006.

49. Amamoto R, Yagi M, Song Y, Oda Y, Tsuneyoshi M, Naito S, et al.
Mitochondrial p32/C1QBP is highly expressed in prostate cancer and is
associated with shorter prostate-specific antigen relapse time after radical
prostatectomy. Cancer Sci. 2011;102(3):639–47. https://doi.org/10.1111/j.134
9-7006.2010.01828.x.

50. Gao LJ, Gu PQ, Fan WM, Liu Z, Qiu F, Peng YZ, et al. The role of gC1qR in
regulating survival of human papillomavirus 16 oncogene-transfected
cervical cancer cells. Int J Oncol. 2011;39(5):1265–72 doi: 10.3892/ijo.2011.
1108. Epub 2011.

51. Yu H, Liu Q, Xin T, Xing L, Dong G, Jiang Q, et al. Elevated expression of
hyaluronic acid binding protein 1 (HABP1)/P32/C1QBP is a novel indicator
for lymph node and peritoneal metastasis of epithelial ovarian cancer
patients. Tumour Biol. 2013;34(6):3981–7. https://doi.org/10.1007/s13277-
013-0986-6.

52. Wang J, Song Y, Liu T, Shi Q, Zhong Z, Wei W, et al. Elevated expression of
HABP1 is a novel prognostic indicator in triple-negative breast cancers.
Tumour Biol. 2015;36(6):4793–9. https://doi.org/10.1007/s13277-015-3131-x.

53. Kim K, Kim MJ, Kim KH, Ahn SA, Kim JH, Cho JY, et al. C1QBP is upregulated
in colon cancer and binds to apolipoprotein A-I. Exp Ther Med. 2017;13(5):
2493–500. https://doi.org/10.3892/etm.2017.4249.

54. Saha SK, Kim KE, Islam SMR, et al. Systematic Multiomics analysis of
alterations in C1QBP mRNA expression and relevance for clinical outcomes
in cancers. J Clin Med. 2019;8(4):513. https://doi.org/10.3390/jcm8040513.

55. Wu J, Zheng C, Wang X, Yun S, Zhao Y, Liu L, et al. MicroRNA-30 family
members regulate calcium/calcineurin signaling in podocytes. J Clin Invest.
2015;125(11):4091–106. https://doi.org/10.1172/JCI81061.

56. Schittenhelm MM, Walter B, Tsintari V, et al. Alternative splicing of the
tumor suppressor ASPP2 results in a stress-inducible, oncogenic isoform
prevalent in acute leukemia. EBioMedicine. 2019;42:340–51. https://doi.org/1
0.1016/j.ebiom.2019.03.028.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Zhong et al. BMC Cancer          (2021) 21:455 Page 11 of 11

https://doi.org/10.1016/j.jss.2004.10.003
https://doi.org/10.1245/s10434-006-9090-0
https://doi.org/10.1111/apm.1965.64.1.31
https://doi.org/10.1111/apm.1965.64.1.31
https://doi.org/10.1002/ijc.27514
https://doi.org/10.1111/j.1365-2036.2004.02075.x
https://doi.org/10.1159/000358803
https://doi.org/10.1159/000358803
https://doi.org/10.1517/13543784.2014.847086
https://doi.org/10.1101/gad.1653708
https://doi.org/10.1101/gad.1653708
https://doi.org/10.1073/pnas.1518752113
https://doi.org/10.1073/pnas.1518752113
https://doi.org/10.1002/jcp.28769
https://doi.org/10.1002/jcp.28769
https://doi.org/10.21873/anticanres.11405
https://doi.org/10.21873/anticanres.11405
https://doi.org/10.1002/mc.22933
https://doi.org/10.1002/mc.22933
https://doi.org/10.1016/bs.ircmb.2016.06.006
https://doi.org/10.1016/bs.ircmb.2016.06.006
https://doi.org/10.1111/j.1349-7006.2010.01828.x
https://doi.org/10.1111/j.1349-7006.2010.01828.x
https://doi.org/10.1007/s13277-013-0986-6
https://doi.org/10.1007/s13277-013-0986-6
https://doi.org/10.1007/s13277-015-3131-x
https://doi.org/10.3892/etm.2017.4249
https://doi.org/10.3390/jcm8040513
https://doi.org/10.1172/JCI81061
https://doi.org/10.1016/j.ebiom.2019.03.028
https://doi.org/10.1016/j.ebiom.2019.03.028

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Data preparation and differential expression analysis
	Development of the 23-RNA signature
	Construction and assessment of genomic signature based model
	Functional enrichment analysis
	Statistical analyses

	Results
	Patient characteristics
	Differential expression analysis
	Construction of 23-RNA signature based risk score
	Construction and verification of genomic signature based model
	Functional enrichment analysis

	Discussion
	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

